
187

CHAPTER
 Asteroids

 Chapters 12 through 16 feature in-depth examples that will provide recipes for
the game feel of the games they describe. To develop these examples, we’ll apply
the classifications we built in Chapters 6 through 11, breaking down well-known
existing games into input, response, context, polish, metaphor and rules. The idea
underlying these breakdowns is not simply to clone these games, though that’s cer-
tainly possible using this information. The idea is to better understand the hun-
dreds of tiny implementation decisions that gave these games the feel they have. In
many cases, these decisions seem counterintuitive—artificially changing gravity at
the highest point of a jump, for example. All these little decisions and relationships
together, though, are what make these games feel good.

 The creators of these games did not follow a particular methodology. They
noticed something that bothered them about the feel and tried different implemen-
tations until it felt better. Coming at it from a more structured place, we can look
not only at the decisions they made inside their specific games, but make gener-
alizations about why this worked the way it did and how it can be applied to all
games. That’s the idea, anyway. We want to understand the principles underlying
these decisions outside of the context of specific games.

 With that in mind, we’re not interested in specific implementations in specific
languages; you could achieve the same feel coding in Actionscript, C � � or Python.
It really doesn’t matter. Also, throughout these chapters I will reference specific
examples. I highly recommend you go to http://www.game-feel.com and download
the examples, experiencing the difference in feel at various points throughout the
example. These things are better felt than described. For each demo, the idea was
to expose the important parameters, enabling you to feel differences in game tuning
without having to program anything. I recommend going to http:// www.game-feel
.com/examples/ and downloading each applet so you can follow along. These
things are best felt.

 At the start of every example section, I’ve provided a URL to a naked version of
the system, with every parameter tuned to zero. Consider these an exercise in tun-
ing. The pieces are all there; if you want a challenge, I suggest trying to recreate the
feel of each game from this all-zero tuning.

187

 TWELVE

CHAPTER TWELVE • ASTEROIDS

188

 The Feel of Asteroids
 Asteroids redefined the meaning of “video game. ” It was the iPod of its time, as
synonymous with video games as Apple’s ubiquitous product is with digital music
now. When the game was released in 1979, it sold more than 70,000 units, obliter-
ating all previous sales records, including those set by Space Invaders the previous
year. Space Invaders, itself a game so popular that it caused a national coin short-
age in Japan, was left in the dust. Why was this? Why did Asteroids dominate? How
could it handily overtake a game so overwhelmingly popular? The answer hinges on
the game’s unique feel.

 Asteroids was, in essence, a rebalancing of the formula set down by the pro-
genitor of all good-feeling games, Steve Russell’s Spacewar!. As such, it featured
programmatically simulated inertia and discrete tracking of velocity, acceleration
and position of the ship. Pressing the thrust button added force into the simulation,
accelerating the ship forward in whatever direction it was currently facing. Turning
the ship was a much simpler affair, overwriting the ship’s orientation to rotate it left
or right.

 The combination of this detailed simulation for position and the simple, direct
rotation gave Asteroids both crisp precision and a flowing expressivity. It was as
though the ship was always on the verge of being out of control, but it never actu-
ally was. The player’s job was to steer and tame it. This feel was not novel. There
had been numerous attempts to bring the Spacewar! feel to arcades, including
Cinematronic’s Space Wars and Atari’s own Computer Space. The insight of Lyle
Rains and Ed Logg in designing Asteroids was to find just the right combination of
rules and spatial context for the tuning of the ship’s movement. The spinning aster-
oids provided just the right context, dominating the screen space in a difficult but
not oppressive way. They were just the right shape, size and speed for the motion
of the ship, providing close shave after close shave and round after round of fluid,
expressive excitement. The rules were simple, encouraged a very clear and particu-
lar set of skills and rewarded continued play.

 By comparison, the feel of Space Invaders (Figure 12.1) was stiff and rigid. Its
motion was limited to a small region at the bottom of the screen. Its left-right steer-
ing changed only the ship’s position, and did so rather slowly. It is an enjoyable
game but in terms of feel, it does not compare to the rich flowing motion of the
ship in Asteroids.

 William Hunter, curator of the excellent video game history Web site thedoteaters
.com writes, “I was never much of a Space Invaders fan. … But Asteroids, with its cool
ship inertia and frighteningly close shaves between the rocks, is simply a master-
piece of design and programming. While the games that had inspired Asteroids,
such as Spacewar! and Computer Space, had pioneered the concept of inertia in
video games, the feeling of actual physics being played out in Logg’s creation is
another big draw of the game. ” 1

 1 http://www.thedoteaters.com/p2_stage2.php

189

 There are still games being made today that emulate the feel of Asteroids, such
as Shred Nebula and Geometry Wars. The feel of Space Invaders, however, is all but
gone from modern mechanic design.

 Input
 Asteroids ’ input space consists of five standard buttons (Figure 12.2). The buttons
are far apart, making control a two-handed affair, though all five buttons can be
pressed simultaneously. Though the possibility exists, there are no chorded moves
in Asteroids.

 Physically, the Asteroids cabinet is big and bulky, made out of wood. The surface
in which the buttons are embedded is nice and smooth, made out of molded plas-
tic; it feels good. The buttons themselves are big and springy and make a satisfying
noise as they click down. When pressed, they become almost completely flush with
the surface of the cabinet.

 Each button has two states and sends the usual Boolean signals of ON, OFF
and HELD.

 Response
 The incoming Boolean signals modulate parameters in the game in the following
ways:

 The Rotate Left/Right buttons rotate the ship along its axis clockwise and
counterclockwise (Figure 12.3).

RESPONSE

F I G U R E 12.1 Compare the movement of the ships in Asteroids and Space Invaders.

CHAPTER TWELVE • ASTEROIDS

190

 The Thrust button adds force along the local forward direction of the ship, lim-
ited by a maximum value. This progression is highly floaty, taking around three sec-
onds to reach sustain and even longer to release (Figure 12.4).

 The Fire button launches a bullet along the local forward direction of the ship,
limited by a timed delay. The bullet inherits the velocity of the ship. Only four bul-
lets can be on screen at one time.

 The Hyper Space button sets the ship’s position to a new, random value.

F I G U R E 12.2 Five two-state buttons are the inputs for Asteroids.

F I G U R E 12.3 Attack, delay, sustain and release for the rotation in Asteroids. There is a very
slight attack value.

191

 Simulation
 To create the feel of Asteroids, the ingredients are one ship avatar, two varieties of
flying saucers, screen wrap and a healthy sprinkling of asteroids. Since the asteroids
and alien spacecraft exist mostly to provide spatial context for the motion of the
ship, we’ll hold off discussing their behaviors and motion for now and instead focus
on the ship.

F I G U R E 12.4 The ADSR envelope for thrust in Asteroids.

 Playable Example

 Open example CH12 - 1 and try to recreate the feel of Asteroids. The necessary
parameters are there, just zeroed out.

 The ship avatar in Asteroids has two basic motions, accelerate and rotate (Figure
12.5). The rotational motion is crisp and precise while the acceleration is loose and
sloppy. In both cases, the motion’s frame of reference is the ship itself, a “ local ”
motion.

 The most important relationship to the specific feel of Asteroids is the decoupling
of rotation from thrust. This is achieved by storing separate velocity values for the
ship and for the thrust that gets added to it. If these values are not separated and
the thrust velocity overwrites the ship velocity directly, the feel is more like a squir-
rely remote-controlled car than a smooth, flowing spacecraft.

 Let’s build the feel up from the beginning. First, we need a ship that rotates.
The rotation of the ship in Asteroids is simple. If one of the two rotate buttons is
held down, the game adds a small value to the ship’s orientation in the correspond-
ing direction, clockwise or counterclockwise. There’s no simulation in the code, no
acceleration to speed up or dampening to slow down. If the button is held down,
the ship rotates. If not, it doesn’t. However, there is a very slight Attack value
applied to the input signals as they come in (Figure 12.6).

 The ship does not go directly to full speed rotation from a standstill. There’s a
short ramp-up in speed, an Attack, over about a third of a second. It’s subtle, but

SIMULATION

CHAPTER TWELVE • ASTEROIDS

192

without it, the rotation feels stiff and robotic. An interesting thing to note is that,
perceptually, it’s just as though the ship had a very slight inertia that had to be
overcome. From the player’s point of view, it seems as though the ship took that
third of a second to ramp up to full rotation speed.

F I G U R E 12.5 Dimensions of movement for the ship in Asteroids.

F I G U R E 12.6 The attack takes only a quarter of a second, but its absence is noticeable.

 Playable Example

 To experience this subtle difference, open example CH12 - 2 and click on the
 “ Raw Input ” checkbox.

193

 Next we want the ship to move forward in response to the Thrust button. This
motion will be relative to the current heading of the ship, which causes the left and
right rotation to control the direction of the ship. If the forward acceleration were
relative to the camera or to some other object in the world, the ship would be stuck
moving in one direction, which would not be much like Asteroids at all. Now, if we
set the position of the ship the same way we’re setting the rotation, by overwrit-
ing it directly depending on whether or not the button is held down, the feel is stiff
and inorganic. It’s crisp, precise and responsive, but moves so differently from any
object encountered in everyday life that the motion feels jarring and unsatisfying.

 Playable Example

 To experience this, click on the “Mode: Set Position ” checkbox in example
CH12 - 2.

 This is clearly not what we want. The first big thing that’s missing is static
inertia. In Asteroids, the ship speeds up gradually to its maximum and continues
moving at that speed indefinitely until another force acts on it. To get this sense of
inertia, we’ll separate position from velocity and have the Thrust button modulate
acceleration instead of modifying position directly. In each frame, the acceleration
value is added to the velocity value, which then updates the position value based
on how far the ship has moved (Figure 12.7).

 Playable Example

 To experience this, click on the “Mode: Translate ” checkbox in example
CH12 - 1.

 This is the feel of a frenetic racecar gripping the road with perfect sideways
friction. It carves circles, without any hint of the desired Asteroids floatiness. The
motion is interesting, even aesthetically pleasing, but it feels totally different from
Asteroids because the rotation and thrust are now inextricably interconnected.

F I G U R E 12.7 The different values that drive the thruster movement of Asteroids changing
over time.

SIMULATION

CHAPTER TWELVE • ASTEROIDS

194

Turning changes heading instantly, every frame, while the lack of dampening causes
the ship to go on forever without hope of slowing down. To arrive at the feel of
Asteroids, the thrust vector must be separate from the ship’s velocity. When the
thrust button is pressed, instead of setting the modified ship velocity directly, a new
vector is created using the ship’s heading as its direction and the thrust speed as its
magnitude. This is the thrust vector and when the thrust button is held, this vector
is added to the ship’s current velocity (Figure 12.8).

 Great success! This change, between adding and overwriting velocity vectors,
makes all the difference. We now have a simulation that can be tuned to the precise
feel of Asteroids.

F I G U R E 12.8 The most important relationship to the feel of Asteroids is the ship velocity to
the thrust velocity.

 Playable Example

 To experience this, click on the “Mode: Asteroids ” checkbox in example
CH12 - 2.

 The final things to note are the limit on velocity, the screen wrapping effect and
the very low dampening force.

 An arbitrary maximum is applied to the ship’s velocity vector. This value may
change the feel slightly if it is set very high or very low, but primarily it serves as
a catchall to prevent the ship from having runaway speed. If you’re interested in
changing this limit to see the difference, it’s the “ Max Velocity ” parameter.

 The screen wrap effect is achieved by detecting whenever the ship’s position is
greater than the size of the screen, then setting its position to the opposite side of
the screen. For simplicity, this is done for the X and Y edges of the screen sepa-
rately. The screen wrapping, like the Max Velocity parameter, is mostly a pragmatic
measure. Without screen wrap in place, the motion of the ship avatar carries it off
screen in a matter of seconds.

195

 Finally, there’s very little dampening on the motion of the ship. Once acceler-
ated, it will keep going at speed for more than four seconds before coming to rest.
This low friction produces a “ spacey ” feel. Though we Earthbound schlubs have
never experienced frictionless motion, when we see it in a game it reads as space-
like because of our exposure to news footage of astronauts and science fiction films
such as “Apollo 13 ” and “ 2001: A Space Odyssey. ”

 The final set of variables we’re tweaking are these (their relationships are shown
in Figure 12.9):

 ● Ship Rotation—How quickly the Y-axis orientation is changed clockwise or coun-
terclockwise per frame

 ● Ship Position—The position of the ship in absolute space, expressed as an X posi-
tion and a Y position

 ● Ship Velocity—The current direction and speed of the ship in absolute space

 ● Thrust Speed—The current thrust value

 ● Thrust Acceleration—The amount the thrust value will increase over time as the
thrust button is held

 ● Thrust Velocity—A vector representing the force that gets added to the ship
velocity when the thrust button is held. It gets its direction from the ship’s cur-
rent heading (which can be different from Ship Velocity) and its speed from the
current Thrust Speed value

 ● Max Thrust Speed—Limits Thrust Speed to a hardcoded maximum value. Speed
can not be greater than this amount

 To summarize the simulation of Asteroids, when the game receives the signal for
“thrust button held down, ” a force is applied along the ship’s forward-facing axis.
As the button is held, that force is increased according to the acceleration value,

F I G U R E 12.9 The relationships that create the feel of Asteroids.

SIMULATION

CHAPTER TWELVE • ASTEROIDS

196

to a predetermined maximum. Whatever direction the ship happens to be facing,
the thrust is applied in that direction as an additive vector. 2 It doesn’t simply over-
write the previous velocity vector of the ship, but rather gets added to it. This is
crucial because it decouples the rotation of the ship from its thrust. This separation
of thrust from rotation is the most important part of the feel of Asteroids. It enables
the ship to rotate freely regardless of its current velocity. It gives the impression of
frictionless motion as well as creates a slightly manic feeling of being constantly out
of control. It’s only when the thrust button is held that the orientation of the ship
affects its velocity, and even then it’s additive. The end result is highly floaty: when
the player changes direction by rotating, it will take almost three seconds before the
velocity of the ship is in line with its heading. In the case of the context and rules of
Asteroids, this floatiness is both desirable and awesome.

 Context
 The only thing that really needs to be said about the asteroids in Asteroids is that
they provide just the right spatial context for the ship’s movement. The larger aster-
oids dominate a large amount of the screen, but they move very slowly and are
easy to predict. Smaller asteroids take up less screen space but are much more dif-
ficult to dodge because they move much more quickly. In all cases, the ship moves
faster than the asteroids themselves but because its motion is so wild and squirrely
and because the constraint of screen wrapping applies equally to both the asteroids
and the ship, every asteroid on the playfield feels unsettling. For me, it feels like
being an experienced ice skater at a crowded public rink. When I go to a public
skate, I can skate much more quickly than just about everyone on the ice because I
played hockey as a kid. But I can’t predict when people are going to fall or turn or if
they’re suddenly going to cut across me to head to the cocoa machine. As a result,
I limit my speed and try to give everybody a wide berth. Even though I can stop
and turn quickly, I don’t have enough control to stop myself from running over or
into someone’s mom if she biffs it in front of me. Playing Asteroids feels a bit like
an extremely crowded kids ’ night at the local rink. Except for the shooting and the
subdividing asteroids, of course.

 In terms of functionality, the asteroids are imparted with a random velocity at the
beginning of the game. When shot, they break down into medium-sized asteroids
and have an additional force applied to them in a random direction. They inherit
the velocity of the larger asteroid that spawned them, though, so the likelihood of
their speed going up rather than down is very high. The same thing happens when
they split into the smallest asteroids. There’s no particular insight here; the aster-
oids, as they get broken down, further clutter the field and become more difficult

 2A vector is a combination of speed and direction. For example, driving 40 mph to the west would be a
vector, where 40 mph is just a speed and west is just a direction.

197

to maneuver around. The ship moves very quickly and turns rapidly, but the turn-
ing never seems quick enough to truly react and get out of the way of an asteroid
unless you’ve planned ahead.

 The flying saucers are much more difficult to deal with than the asteroids, but
they provide fundamentally the same function. They move in unpredictable pat-
terns, going mostly horizontally but randomly moving up and down. And, of
course, they shoot back. The closer you are to them, the more likely you are to be
shot, so dealing with them feels a bit like poking a hornet’s nest with a long stick.

 Generally speaking, the feel of Asteroids is as much defined by the things to be
avoided as it is by the motion of the ship itself. The constant, inescapable danger
of the asteroids is compounded by the wily flying saucers, and the screen wrap
means that you can never escape. These dangers give meaning to the quick, slip-
pery motions of the ship, defining every subtle twist and turn and making it feel
almost more out of control than in control.

 Polish
 Without a lot of processing power to spend, it would be perfectly reasonable for
Asteroids to lack for polish effects of any kind. Instead, the Atari engineers rose
to the challenge magnificently, with a masterful cohesion across visual and sound
effects. Specifically, there is an excellent, consistent relationship between the vis-
ual size of objects and the sounds they make. For example, when a large asteroid
is shot, it makes a deep, booming sound. A medium asteroid’s explosion sound is
higher pitched, and smaller asteroids are higher still. Similarly, the large flying sau-
cer makes a lower pitched noise than the small one. Being the smallest objects in
play, bullets make the highest pitched sound of all. Of all the sound effects, the
thruster firing is the lowest and most rumbling, conveying the sense that it is a
comparatively powerful device.

 Other subtle but effective polish effects include a spray of particles when
an asteroid is destroyed, the ship disintegrating into its component parts when
destroyed, and the subtle but effective flashing of the vector line to indicate rocket
flame. Because of the limited processing power, each individual effect is drop-dead
simple. They harmonize so well, though, that the net effect is a powerful sense
of the physical properties of the ship, flying saucers and asteroids. This is a great
example of how cohesive, self-consistent effects can be more effective than gaudy,
splashy ones that are applied willy-nilly.

 Metaphor
 As a metaphorical representation, Asteroids is very simple. There appears to be a
space ship, but it’s more Flash Gordon than NASA. The asteroids and flying sau-
cers reinforce this science fiction theme. The treatment is highly iconic. It’s not

METAPHOR

CHAPTER TWELVE • ASTEROIDS

198

approaching any sort of realism but it’s also not venturing into the realm of the
abstract. Each item—the ship, the rocket flames, the bullets, the asteroids—is
iconic. They clearly are meant to represent a particular idea. Because the treatment
applied to these objects is simple and consistent, there are few expectations being
set up for the player. The theme is outer space, so the frictionless feel of the ship is
certainly not clashing with the metaphorical representation, but neither is it inextri-
cably linked with it. A car-like physics such as the one we experienced earlier might
not seem so jarring because the visualization is so simple.

 Rules
 The main rules affecting the feel of Asteroids are those related to collision and
destruction of the ship. At the start of the game, the player is arbitrarily given
three lives. Running into anything—bullet, asteroid or saucer—destroys the player
instantly and removes one of those lives. This serves to make the ship seem exceed-
ingly fragile and to make extra lives seem like the most valuable commodity in the
game. This sense of value also hooks into the points system: because you gain an
extra life for every 10,000 points you score, destroying asteroids feels gratifying and
worthwhile. A large asteroid is worth 20 points, a medium is worth 50 and a small
is 100 points. This creates a nice value scale for the destruction of asteroids and pro-
vides constant incentive to destroy them.

 What’s really set up, though, is an awesome risk-reward relationship with the
tiny flying saucers. Flying saucers are simultaneously the most dangerous and diffi-
cult to kill objects and the most valuable. For a large saucer, you get 200 points. For
the small, extremely difficult to hit saucer, you get 1,000. So there’s a lovely risk/
reward tradeoff that happens, because you get so many more points for destroying
this tiny flying saucer than for blasting another set of mundane asteroids. When you
see one come across, even though it is shooting back at you and is an unpredict-
able, tiny target, you focus on it and steer toward it because there’s the promise of a
huge number of points, which moves you that much closer to getting an extra life.

 Of course if you lose a life in the process of trying to shoot this damn thing,
the point is moot. So there’s this circumspect little calculation that happens in your
brain about risk and reward. Is it worth it, is it not? How many lives do I have? Do
I have a lot? Do I need the points? How close am I to getting extra life? And so on.
This sense of value, risk and reward affects feel by driving the player closer to the
tiny saucer. In so doing, they learn a whole new set of skills and experience just how
out of control the ship is relative to the saucer’s quick, precise motions and shots.

 Summary
 Asteroids was groundbreaking and hugely popular, in large measure because of its
unique feel. Applying our taxonomy of game feel, it’s easy to see why.

199

 The input device was satisfying, though it only used Boolean on-off buttons,
and it mapped well to how things moved in the game action. It also required both
hands and five fingers, ensuring the player was challenged (but not too much) and
engaged.

 The response mapping was clear, simple and easy to follow.
 But a lot of the “secret sauce ” of Asteroids was in the simulation. Thrust is sepa-

rated from rotation, creating the most important part of the feel of Asteroids. It cre-
ates the loose feel that is so crucial to the feel of the game.

 In terms of context, the asteroids in Asteroids provide just the right spatial back-
ground for the ship’s movement. The constant, inescapable danger of the asteroids
is compounded by the wily flying saucers, and the screen wrap means that you can
never escape. These dangers give meaning to the quick, slippery motions of the
ship, defining every subtle twist and turn and making it feel almost more out of
control than in control.

 Adding to the overall feel, just the right amount of polish was used in Asteroids—
not overdone, not underdone. Visual and sound effects are simple, but cohesive and
self-consistent, making the most of the processing power available at the time.

 The metaphor—outer space—is simple and iconic, setting up easy to exceed
expectations of how “ real ” spaceships ought to behave in the mind of the player.

 Finally, the rules in Asteroids are exceptionally well done, challenging the player
to increase his or her skills in anticipation of greater rewards.

 Overall, all of these elements were balanced beautifully to create a simple but
wildly popular game. The man who conceived Asteroids, Lyle Rains, and the crea-
tive visionary who programmed and designed the game, Ed Logg, did everything
right. It’s no wonder Asteroids was such a hit in the United States and became
Atari’s best selling game of all time.

SUMMARY

This page intentionally left blank

201

CHAPTER
 Super Mario Brothers

 Super Mario Brothers was a breakout hit for video games as a medium.
 In 1983, things looked a littles bleak for the future of digital games. “ Video

game ” was a dirty word to retailers, and arcades were shutting their doors with
frightening speed. Atari had flooded the market with inferior product, culminating
with the much-lampooned E.T. The Extra-Terrestrial cartridge. Consumers lost inter-
est, retailers lost money and doomsayers decried the fiery end of the video game
fad. Enter Nintendo and its “Entertainment System. ” Improbably, a young industrial
design graduate was about to change video games forever.

 A quiet, unassuming man who is “very content ” with his modest salary and
seems genuinely bemused by his worldwide celebrity, Shigeru Miyamoto was an
unlikely candidate for “world’s most acclaimed game designer. ” As he flashes
his trademark smile and casually explains his original sketches for Donkey Kong,
you get the sense that he is as excited today about the idea as he was more than
20 years ago. Because there was simply no one else in the company available,
Miyamoto was tapped by Nintendo president Hiroshi Yamauchi to create the game,
Miyamoto’s first. In the most emphatic and real sense, the future of Nintendo hung
on the unproven industrial design graduate and his “Stubborn Gorilla. ” Against all
odds, the game became a smash hit, in a stroke saving the ailing Nintendo and
establishing Miyamoto’s reputation.

 While it was the first major hit of the burgeoning “ platformer ” game type,
Donkey Kong still felt very stiff. The character in Donkey Kong, Jumpman, 1 could
run left and right, climb ladders, and, of course, jump. His jump followed a specific,
predetermined arc and he only ran at one speed. On or off, full speed or complete
standstill. There was no gradual acceleration or deceleration and no control over
the jump once you were in the air. It was a step forward—a charming, playful game
with appealing characters, bright colors and detailed animations—but it still felt
very stiff. Miyamoto knew that his games could feel much better. After a successful
Donkey Kong sequel, he turned his attention to refining the movements of his now-
Italian, now-plumber character in Mario Brothers.

201

 THIRTEEN

 1 The naming of Mario was, apparently, a conciliatory gesture to the irate landlord of Nintendo of
America’s warehouse, Mario Segale.

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

202

 Mario Brothers was different. This time, Mario jumped much higher, though his
trajectory was still unalterable once he’d left the ground. The first hint of the power-
ful feel that was to come was in Mario’s left and right movement. Instead of move-
ment being binary-state (full speed or stopped), when the joystick was pressed,
Mario now had three states: stopped, walking and running. As a result, he now
sped up gradually, and the player could make quick tapping motions on the joy-
stick to make small adjustments to his position. Likewise, once the joystick input
stopped, there was a slight slide as Mario came to a halt. Mario now had inertia.
This smooth feel was used in games like Asteroids and the venerable Spacewar! but
had not yet found its way into a character-based game about jumping over obsta-
cles and gaps. Mario Brothers was a modest hit, coming as it did at the end of the
arcade era.

 In 1986, all the elements came together. Super Mario Brothers combined a loose,
fluid feel with a powerful character-driven metaphor and a charming, surreal treat-
ment. Instead of one extra state inserted between standing and running, there were
hundreds. Mario now accelerated gradually, without perceptible switches, up to his
full speed. When the input stopped, he slid gradually to a halt. The game felt intui-
tive but deep: sloppier and more imprecise than Donkey Kong, but better for it.
Somehow it felt more “ real. ” It took the world by storm. The first truly universal hit
video game, Super Mario Brothers sold more than 25 million copies worldwide, far
and away the greatest selling game of all time. In a 1987 survey, Mario was more
recognizable to American children than Mickey Mouse.

 Miyamoto understood game feel not in terms of simulation but of simplification.
First, he regarded the feel of a game artistically, as a composite aesthetic experi-
ence. At a time when the field was dominated by engineers who, in the tradition of
Steve Russell, drew on complex, literalistic metaphors like the gravitational pull of
black holes or landing a spacecraft on the moon, Miyamoto brought a refreshing,
naïve perspective. He simply wanted to make fun, colorful games about whimsical
characters that felt good to play. Second, he designed games holistically, taking into
consideration both software and input device. (To this day, Miyamoto designs con-
trollers as well as games, a rarity among designers, especially now, with the death
of the arcade.) Finally, Miyamoto understood the power of metaphor and how it
affected players’ willingness to learn and master a complex system and their emo-
tional attachment to it.

 Miyamoto had intuited just how powerful the tactile, aesthetic feel afforded by
instantaneous reaction to user input could be. Super Mario Brothers felt great, a
shining example of possibility for virtual sensation.

 Now the big question: just how was this feel created? How does one build a
game that feels exactly like Super Mario? Like many questions surrounding game
feel, this is a surprisingly difficult question to answer. Just thumb through this chap-
ter and you’ll see; even for a game as simple as Mario, there are a huge number
of tiny but ultimately important decisions that must be accounted for. Individually,

203

they often seem trifling and bizarre. Taken as a whole, they lead to the feel that sold
more than 25 million copies.

 Input
 As an input device, we have the NES controller. The signals it sends are very simple,
as we have said, and overall it has very little sensitivity as an input device. It feels
pretty good to hold and use and is composed of a series of standard two-state but-
tons. One of its great strengths is its simplicity. When you hold it, it’s almost impos-
sible to press the wrong button since there are so few for each thumb to deal with
(Figure 13.1).

INPUT

F I G U R E 13.1 The simple, but classic, NES controller.

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

204

 Button States Signals Combination

 A 2 Boolean B, any direction

 B 2 Boolean A, any direction

 Up 2 Boolean A, B
One other direction at a time, except down

 Down 2 Boolean A, B
One other direction at a time, except up

 Left 2 Boolean A, B
One other direction at a time, except right

 Right 2 Boolean A, B
One other direction at a time, except left

 Each button sends a binary signal. Taken alone, this input data can be inter-
preted as “ up ” or “ down. ” When measured over time, the signal can be interpreted
as “ up, ” “ pressed, ” “ down ” or “ released. ”

 That’s it. Not much more to say about the NES controller; as an input device it is
among the simplest, most effective ever created. The plastic on the front is smooth
and porous, the buttons springy and robust, and the overall package feels solid.

 Note that we’re using the keyboard to control the examples presented here,
which will change the feel of control by allowing left and right to be pressed simul-
taneously and because this input uses multiple fingers instead of a single thumb.

 Response
 There are two avatars in Super Mario Brothers, Mario himself and the camera. Mario
has freedom of movement along a 2D plane, X and Y, as shown in Figure 13.2 .

 Since the Mario avatar doesn’t rotate at all, there’s no distinction between local
and global movement.

 The camera (Figure 13.3) is indirectly controlled by the player via the position of
the Mario avatar and moves in only one axis, X. Interestingly, it can never move to
the left.

 A Recipe for Mario
 The feel of Super Mario Brothers lives primarily in the main Mario avatar.

 If you want to create a game that feels exactly like Super Mario Brothers, the first
thing you need is a rectangle. This is how the game views the object that millions of

205

us know and love as Mario. He’s simply a rectangle. More specifically, he’s a series
of points that form a rectangular shape, but for our purposes it’s reasonable to call
him a rectangle. So let’s start with our rectangle, sitting motionless in the center of
the screen (Figure 13.4).

F I G U R E 13.2 Mario moves in two dimensions, X and Y.

F I G U R E 13.3 The camera in Super Mario Brothers moves in one dimension: the X-axis.

 Playable Example

 Open example CH13 - 1 to follow along. To begin, there is no motion, all the
parameters are set to zero and the avatar is a blank rectangle in the middle of
the screen.

 The next obvious step is to have the rectangle move. The way Mario’s simulation
functions, there are two distinct subsystems at work, the horizontal (X-axis) move-
ment and the more complex vertical (Y-axis) movement. To start, let’s focus on the

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

206

horizontal movement. It’s the interplay of these two systems that gives rise to the
expressive, fluid feel of Mario, but they are kept mostly separate as far as the simu-
lation is concerned.

 Horizontal Movement
 All horizontal movement in Mario is mapped to presses of the left or right direc-
tional pad buttons. The signals coming in are simple Booleans and they can’t be
pressed simultaneously because of a physical constraint imposed by the input
device itself. As a result, at any given time there will be only one relevant signal
coming in from the input device: left or right. The simplest way to map this input
to a response in the game would be to store only a position for the rectangle. When
either the left or right signal was detected, the rectangle’s position would change
by a certain amount in the corresponding direction. As long as the left button was
held, the rectangle would move some distance per frame in the corresponding direc-
tion. This is the way that Donkey Kong works, changing position when the joystick
is held in a direction. This is not, however, how the horizontal movement in Mario
works. Figure 13.5 shows graphing of Mario’s movement over time versus Donkey
Kong (from Chapter 7).

 Now, I like the feel of Donkey Kong. I think it’s rather charming. It’s hard to
argue, however, that it’s more expressive than Mario. Mario feels fluid and respon-
sive while Donkey Kong feels stiff and robotic. Look again at the movement of
each over time; you can see just how many more places it’s possible for Mario be,
how much more expressive potential there is for the player. The primary reason
for this lies in the simulation. Super Mario Brothers has something resembling a

F I G U R E 13.4 The shape of Mario: a series of points forming a rectangle.

207

simulation of physical forces. It’s a sort of first-year college physics level of sim-
ulation, but there are in fact stored values for acceleration, velocity and position.
So while it’s simple by the standards of modern physics simulations, it is a model
of Newtonian physics. It may not be very accurate—the programmers only had
8-bit numbers to work with—but it is modeling things in a certain sense. It’s not
totally fake.

 Donkey Kong has no such simulation. The character has a position and two
states, and that’s it. When you press the right button, the code simply takes the cur-
rent position and adds a value to it. This new position gets drawn to the screen and
becomes the current position and so the motion continues. The player moves at a
constant rate if the joystick is held in one direction or another. There is no period
of acceleration between standing still and running full speed. Likewise, when the
input stops, there is no deceleration. Put another way, Jumpman’s speed can only
ever be equal to, say, five units per second or zero units per second. There is no in
between. Donkey Kong takes the sensitive, expressive input of the joystick with all
its states between center and fully expressed and clamps it down to a simple on or
off response. Figure 13.6 shows the short attack phase of the movement in Donkey
Kong. The movement starts the frame after the input is received, but there is a
sensation of a slight attack because it takes some time to push the joystick from
off to on.

 Mario’s horizontal movement incorporates separate values for acceleration,
speed and position. When the signal for “ left ” is received, it applies an accelera-
tion in each frame rather than feeding directly into position. For each frame when a
directional button is held down, the acceleration value adds a certain amount to the
velocity value. The velocity value in turn tells the rectangle how it should change its
position. Instead of the boxy non-curve shown in Figure 13.6 , the change in Mario’s
position looks like Figure 13.7 .

F I G U R E 13.5 The movement of Donkey Kong and Mario.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

208

F I G U R E 13.6 Donkey Kong’s movement is very stiff.

F I G U R E 13.7 Mario’s movement has a gradual ramp up to maximum speed, making it much
more expressive.

 Playable Example

 If you’re following along in example CH13 - 1, you can experience what we’ve
constructed up to this point by setting a high max speed value (try 2,000) and
turning all the jump values and the deceleration value to zero. If you want, you
can also switch the metaphor to rectangles.

 Now steer back and forth by pressing the A and D keys. Notice anything?
The speed value quickly runs away and becomes way too large. We need to
clamp that down, put a limit on it. This limit is the max speed value, and it
applies unilaterally to both left and right movement.

209

 The other thing you’ll notice at this point is that once set in motion, the rectangle
will not slow down or stop. You can reverse direction, counteracting speed in one
direction with acceleration until such time that the movement switches from right to
left, but you can never come perfectly to a halt again. For this, we need a separate
value to decelerate Mario back to a standstill. This is the deceleration or slowdown
value. If Mario’s running forward and suddenly I stop touching the controller, Mario
will slide gently to a halt. The rate at which he comes to a stop is its own vari-
able, unrelated to how fast you sped up. Now, with the deceleration value included,
we’re getting warmer, close to the horizontal movement feel of Mario.

 The last piece of the puzzle involves the B-button. When the B-button is held,
Mario “ runs. ” The change is caused by a mapping of the B-button to changes in
the simulation. Under the hood, when the game detects that the B-button is held, it
changes the values for acceleration and it changes the max speed. When the B-button
is held, the rate at which the character will accelerate is increased and his max
speed is increased. In this way, the B-button is sort of a state modifier, mapped only
to a change in the parameters of the simulation, not to a particular force.

 This feel was different from games of the time featuring as it did two different
accelerations and two different max velocities for running. The expressive power of
such a seemingly simple change is in the interplay between the speeds. The percep-
tion of increased speed is created by the contrast. The run seems fast only when
compared to the walk. Change both values up or down, and the run still seems like
a run. What’s important is the relationship between the two values. As long as that
relationship is maintained, the impression of speed that comes from the contrast
between walking and running will remain. This is very interesting; it is the relative
relationships between speeds—rather than the speed values themselves—that seem
to be most crucial to the feel.

 Another interesting result of this change is just how much expressive power it
lends to the horizontal movement. If you’re at a standstill and you hold down B
and start running, the curve describing the acceleration will be different—it’s using
higher values. Likewise, because you can press the B-button at any time, it’s pos-
sible to feather the button and adjust speed very precisely. Try it now in the applet;
start running and then try tapping B or holding it at various points in the accel-
eration to see how many different speeds there are between going from standing
to walking, from walking to running and from standing to running. The number of
different possible speeds is huge, adding surprising expressivity just with this one
small change in response.

 Finally, horizontal acceleration in the air is different than on the ground. This
brings out a further contrast, one between acceleration speed on the ground, in the
air and when running. When you’re on the ground, you accelerate at a certain rate,
which is different from the acceleration in the air. It’s simply a different number
that gets applied as a force each frame. As soon as you enter the air state, the hori-
zontal acceleration number changes. Note that pressing and holding B has no effect
in this instance—in the air state, all horizontal movement happens at the same rate.
Also, this is acceleration, not speed, so you can be running as you jump and still

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

210

retain that speedy horizontal movement. What’s reduced is your ability to modify
that velocity by accelerating one way or another.

 To sum up, the important values to the feel of Mario’s horizontal movement are:

 ● Acceleration left

 ● Acceleration right

 ● Max speed

 ● Deceleration

 ● Running acceleration left

 ● Running acceleration right

 ● Running max speed—deceleration always remains the same

 ● Air acceleration left

 ● Air acceleration right

 Note that deceleration remains the same regardless whether the run button is
held or not. At this point, we have a rectangle which will accelerate gradually left
and right to a maximum speed, slow down again gradually to a standstill, and accel-
erate faster to a higher top speed if the B-button is held (Figure 13.8).

 Vertical Movement
 The rectangle’s vertical motion, the jumping of Mario, is a more complex series of
relationships than those governing his movement on the ground. To start, there is a
constant application of gravity. When you’re moving left and right, gravity is always
pulling the character down. That’s simple enough: a constant downward force
applied to the character. But this gravity force is variable. At the moment the jump

F I G U R E 13.8 Horizontal movement in Mario.

211

button gets pressed, Mario is instantaneously imparted with a certain upward veloc-
ity, which counteracts the constant downward pull of gravity, launching him into
a soaring, graceful arc. This upward velocity is gradually reduced as gravity takes
hold again. At the apex of the jump, when velocity reaches 0, gravity is raised arti-
ficially by a factor of three, pulling Mario back to the ground with a much greater
force than the one he overcame to get airborne in the first place. This artificially
inflated gravity has a cap, however, as do all forces in Mario—there is a terminal
velocity that will limit its downward motion. In addition to all of that, there is an
artificial sensitivity created in the amount of time the jump button is held down.
A tiny tap on the button will yield a small hop, while holding the button down
extends the jump. This time sensitivity also has a range; there are minimum and
maximum jump heights, enforced by limits on the minimum and maximum amount
of time the jump will accept inputs.

 If this sounds surprisingly complex, it definitely is. Let’s step through each of the
individual rules and interactions one at a time.

 First, the rectangle needs a constant downward force. This is the force of grav-
ity, constantly pulling the rectangle back to the ground. This force is applied all the
time, even when the rectangle is pressed against the ground tiles. In each frame, the
collision code looks at the position of the rectangle and the forces applied to it. From
that, it infers what the rectangle’s position would be in the next frame. If it would be
inside a tile that’s supposed to be solid, it snaps the rectangle’s position to be flush
against that tile. Though there is a gravity force applied to the rectangle in all places
and at all times, the collision code keeps Mario from falling through the world.

F I G U R E 13.9 The collision code snaps Mario back outside of (but up against) any solid
object, gravity must otherwise push him through. This happens every frame.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

212

 Next, the upward force. At the moment the jump button gets pressed, the Y com-
ponent of Mario’s velocity gets instantaneously set to a high value, which counter-
acts gravity, launching him into the sky. If this force were applied constantly as long
as the button was held, the rectangle would fly forever into the sky.

 Playable Example

 To experience this, try changing the “max jump force duration ” value to
10 seconds or so in example CH13 - 1.

 To mimic Mario, the rectangle needs to gradually slow down, losing upward
force as gravity takes hold. This is not a hard-coded set of values but is instead the
result of two relationships.

 The first relationship is between the initial upward velocity and gravity, which
reduces that value by a small amount every frame. The initial upward velocity has a
limited duration because gravity is always reducing it. After the initial burst of force,
there’s nothing to keep the rectangle moving up. As a result, gravity will take hold
and gradually slow the upward momentum until the rectangle is no longer moving
upward. The result, assuming the character is moving horizontally at the time of the
jump, is a graceful arc. This also has the effect of making the jump feel immediate,
responsive and quick because the moment the input is received there is big, visible
response.

 The second relationship is between the time the jump button is held and the
upward velocity. The jump is time-sensitive. A slight tap on the button will yield a
small hop, while holding the button down longer will extend the jump. This time
sensitivity also has a range constraining it; there are minimum and maximum jump
heights, enforced by limits on the amount of time the jump will accept inputs. In
terms of actual measurable response, if you hold the A-button for the full duration
of the jump, you’ll get a jump that’s about five tiles high. If you tap the A-button as
quickly as possible, the jump will be shallower, with a height of as little as one and
a half tiles. The result is an expressive range of jump height, anywhere between one
and a half tiles and about five tiles in height, which corresponds to releasing the
button somewhere between one frame and about half a second (Figure 13.10).

 The effect is a sort of early out for the jump. The player can choose to release the
button early and in so doing accomplish a shallower jump.

 At this point, with a time sensitive jump in place that applies the maximum
jumping force as long as the jump button is held, the rectangle will jump satisfacto-
rily. The only problem is in the height of the minimum jump: with this implementa-
tion, it is still very high. After all, the maximum jump power is still being applied to
it for a certain amount of time. So the expressive range between the shortest jump
and the tallest is very narrow.

 To make this jump feel right, we’ll need to artificially clamp the jump force in
a way that may seem like something of a hack. Rest assured, though, this is the

213

keystone to getting the good-feeling Mario jump. The hack is this: if the game is in
the jump state and it detects that the jump button is no longer being held, the game
then checks to see if the Y velocity, the jump force, is above a certain threshold. If
it is, it will artificially set the Y velocity to a specific, unchanging, lower value. The
value is close to zero but is not actually zero. Weird, eh? Even if you only tap the
jump button for one frame or two frames, it still receives the full upward velocity.
It’s just that when the button is released earlier, it artificially sets the jump force to
a lower number before it allows the jump to take its course. The effect is that you
float just a little bit more upward from the point of release and always fall with that
nice, flowing arc (Figure 13.11). It feels a lot better than the wide variation of arcs
you would get otherwise.

 An example with actual numbers will help visualize this more clearly. When the
button is held down for the maximum time allowed (giving the maximum jump
height), the progression of upward velocity might go something like the jump
shown in Figure 13.12 .

F I G U R E 13.10 Jump height in Mario depends on how long the button is held, but only to a
certain point.

F I G U R E 13.11 Upward velocity is artificially set lower when the player opts out by
releasing the button early (thus getting a much smaller jump).

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

214

 So on the first frame after the button is pressed, the jump force is 100 in the
Y direction. This large force will propel the rectangle upward quickly. In the next
frame, the force will have been reduced only slightly by gravity, to something like
90. In each subsequent frame, the force in the Y direction is lowered only slightly
until eventually the maximum jump time is hit. At this point, the input is no longer
important, and the jump force falls off gradually to zero, at which point the rectan-
gle begins to fall back to the ground (Figure 13.13).

 Contrast this with the shortest possible hop, where you’re effectively getting a
jump at the minimum power, which is much lower than the velocity of the full jump.
It will give you the full power jump (100) at the first frame, but by the second or
third frame, the jump force has already been set to the lower hard-coded value (20).

F I G U R E 13.13 Falloff in upward velocity when the player opts out early.

F I G U R E 13.12 Falloff in upward velocity over time.

215

Instead of setting the value to 90, 80, 70 and so on until the full height jump arc has
been completed, it sets it right to 20, the velocity at which the jump stops listening
to button input regardless. Similarly, if you hold the button for half of the range of
the jump, it might go 90, 80, 70, 60, 50 then to the preset 20. The result is that jump
will always have the same arc, especially at the end. The duration of the button just
changes how high (and consequently how far) it will go.

 Now back to the jump in progress. If you’ll recall, the rectangle has only reached
the apex of the jump, the point at which vertical component of velocity is reduced
to zero (by gravity acting on it over time). Now it has to fall back to the ground.
Interestingly, after the tipping point, gravity changes. If you’re running along and
you press jump, gravity is the same normal value it always was. You’re imparted
with a negative Y velocity and it sends you upward, temporarily overcoming the
weaker pull of gravity. The upward force will only be added for a certain amount
of time, though, as gravity gradually takes hold and slows you down until you have
no upward force. Once you reach the peak of your jump, instead of just allowing
the natural pull of gravity to bring you back to the ground, the gravity is artificially
increased, sucking you back down to the ground. It applies this stronger gravity
whenever you’re falling, whether you’ve just reached the peak of a jump, walked
off the edge of a platform or bumped into an overhead block (which sets your
vertical velocity to zero).

 Try setting the fall gravity to the same level as the negative gravity and see what
happens. The jump seems to take far too long and you begin to feel as though
you’ve been out of control of the character for far too long. The impression of
weight is also affected, making the rectangle seem far lighter than it ought to. In a
word, it feels weird.

 The final piece of the fall is a clamp on the possible falling speed. Just as the hori-
zontal speed has a maximum, so too does the vertical. When you’re falling, there’s
a terminal velocity that is definable by code. It’s hard-coded. If you don’t limit it,
you can really feel the difference. When you jump from somewhere high, you’ll get
going really quickly before you hit the ground and it’ll feel weird. If instead you set
this number very low, it will feel like opening an umbrella in a cartoon or some-
thing, where you can actually feel the artificial clamp take hold. You can tell it’s not
the natural arc of the fall. Try both—setting the terminal velocity to something very
high or very low—to get a sense of it.

 At this point, we have a rectangle that has gravity applied to it and will jump to
different heights when the jump button is held down for shorter or longer periods.
These periods are limited by maximum and minimum time values, however, which
define a certain expressive range of possible jump heights. The arc of the jump will
always feel the same, however, because if the game detects that the jump button is
no longer held while the jump force is being applied, it will artificially set the value
to a lower value. This value never changes, so the end of every jump will have
approximately the same arc. When the arc has completed, an artificially high gravity
value pulls the rectangle back to the ground quickly and efficiently, decreasing the
time during which the player has reduced control of the character and enhancing

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

216

the perception of weighty, close to real-world gravity (even if the character is leap-
ing around like a flea). Finally, the speed at which it is possible for the rectangle to
fall is clamped to prevent it from getting too high and feeling unnatural.

 To sum up, the important values to the feel of Mario’s vertical movement are:

 ● Gravity

 ● Initial jump force

 ● Minimum jump button hold time

 ● Maximum jump button hold time

 ● Reduced jump velocity

 ● Falling gravity (about three times normal gravity)

 ● Terminal velocity (maximum falling speed)

 Finally, there is one small crossover between vertical and horizontal movement.
In Super Mario Brothers, if you press jump while you’re moving faster than the
normal walk speed, you’ll get a small extra jump boost. The initial jump force will
be slightly higher, so the height of the overall jump will go up slightly. If you’re
anywhere between the full, running maximum speed and the normal walking maxi-
mum speed, you get a little bit of extra jump velocity. Jumping from a standstill,
you can reach a height just under five tiles. If you get a running start (holding B)
you can just about get over and land on a five-tile-high surface. This height boost
is not commensurate to the speed at which you’re moving at the time of takeoff;
you get the height boost or not, depending on whether you’re over the normal max
speed when the jump button is pressed.

 Collision and Interaction
 Next comes collision, where Mario’s world becomes solid.

 Mario is a rectangle, one tile high. A tile is a nice way to simplify the layout,
position and properties of things in a 2D game. Instead of having to store detailed
positions for each object, we can create a grid of tiles and reference their position
with simple two-number combinations. Typically, tile (0,0) is in the upper left hand
corner of the screen. The tile below it is (0,1), the tile to the right of it is (1,0) and
so on. If we store a list of all these tiles, we can easily find out where a tile is in
relation to any other tile (Figure 13.14). If, when you make your list, you specify
the type of tile it is—sky or brick or pipe or whatever—you can then check to see
whether or not Mario can pass through that tile.

 So, to make Mario collide with things, we look at his velocity. By knowing his
direction and speed, we can tell which tile he will be in the next frame. If the tile
is, say, a brick tile which Mario is unable to pass through, we place him on top of it
instead of allowing him to go through (Figure 13.15).

 This is pertinent when you have, say, an air tile below Mario in one frame and a
ground tile the next. If you know this, you know that Mario should be falling, but

217

that he’s just about to land back on the ground again. This is how simple collisions
are done. Without getting into unnecessary detail, the feel of a simple tile-based
collision system like this is very slippery. Because there is no simulation of fric-
tion—the dampening that slows Mario back down again —applied based on what
material he’s sliding across, the feels is that of a bar of soap sliding across wet tile.
He won’t get caught or hung up on anything, and the overall sensation is very loose
and sloppy. In the case of Mario, this is a huge part of the appeal. This is, of course,
not always the case. To create the satisfying carving motion of a car or bike turning
is to simulate the friction between tire and ground. But Mario essentially has no
friction. Being pressed against a wall of blocks does not slow his jump force; he’s
free to slip slide across everything.

F I G U R E 13.14 Tiles in Mario.

F I G U R E 13.15 Instead of going through the tile Mario is placed on top of it.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

218

 So now we have a rectangle that slips and slides across the environment, never
getting stuck and always feeling perfectly solid. Only the rare spring platforms feel
as though they have a bit of give. The rest of the objects in the world are like pol-
ished marble, and Mario himself is equally unyielding and smooth.

 The next little particular that the rectangle needs is to have its Y velocity set to
zero in every frame. As noted earlier, gravity gets applied to every frame, even when
Mario is colliding with the ground. In each frame, his collision places him up a lit-
tle bit, back on top of the block, and in each frame his Y velocity gets set back to
zero. When falling, the gravity force will set the Y velocity to something very high
(the fall gravity) to pull the rectangle downward. If you don’t set that Y velocity to
zero when he’s in contact with a tile, a great deal of force gets built up and “ stored ”
in a weird way. The collision still keeps you out of the ground but if you walk off
the cliff, you plummet down because you have this huge negative velocity built up.
It feels really weird. Instead, you want your Y velocity to be guaranteed to be zero
when a fall starts so gravity will pull the rectangle gradually and appropriately to
the ground.

 The opposite case (when the character jumps and hits a tile above) also needs
the Y velocity set to zero. If you hit the ceiling and the Y velocity is not zero, you’ll
stick to the ceiling (as you do in Super Contra). Mario still wants to move up every
frame. The collision will stop him from moving through the tile, but it will have no
effect on his upward velocity. To get the right feel, you have to set Y velocity to zero
whenever a collision is detected, whether it’s from above or below.

 Another little behavior particular to the original Mario is the lack of height
boosts for bouncing off an enemy’s back. When you hit a turtle’s back, it sets you
to the same state as if you’d released the jump button after the minimum amount of
time. The rebound off a turtle or Goomba is a tiny little hop, as with the minimum
strength jump. This changed in later games such as Super Mario World, where hold-
ing down the jump button while bouncing off the back of an enemy would give you
a massive height boost, much higher than that afforded by a regular jump.

 The only objects in the game that give Mario a height boost are the springy plat-
forms. But you must jump just at the right time. It’s wicked hard, though, because
the window for doing it properly is extremely small. In the later games, simply hold-
ing down jump while bouncing off an enemy or jump platform will give you the
extra boost, which to me feels better as an implementation.

 To wrap up the movement of the primary Mario avatar, there is one particularly
rare special case that’s worth mentioning. If you get a mushroom and you’re too tall
to walk under a one-tile-high brick, you can slide under it. If you’re small, you can
just run through. But if you’re big Mario, you have to build up a head of steam and
slide in there. The case the game has to deal with is: what do you do when you stop
ducking? In some games, you just can’t stop ducking—you’re forced to remain in
the duck state. Mario enables you to stand up, which puts you in a weird, unique,
single case game state where you can’t move or do anything (even duck). It pushes
you right, locked out of input, until you’re free of any collisions. It’s a bit stopgap,
but I guess it covers a weird case that Mario can get into.

219

 Finally, we come to the movement of the camera, which functions as a second,
if indirectly controlled, avatar. Clearly, the feel of Mario includes the motion of the
camera and the game would not feel quite correct unless the camera moves prop-
erly with the avatar. First, the camera moves only to the right. Once it has moved
right, it cannot be moved back to the left. To me, this feels a bit oppressive and it’s
unclear whether this was a technically motivated decision or a design one. Either
way, it has the effect of cramping up the screen and encouraging constant forward
motion. If the player goes to the left, the fact that the camera does not move feels
abrupt, halting and unyielding. When moving to the right, the screen scrolls at the
same speed as the character. The only small, important thing for feel is the small
zone extending from about 25 per cent of the screen width from the left edge to
the center. Inside this zone, the scrolling speed is reduced. The effect is a gradual,
though rough, speeding up of the camera as the character accelerates from a stand-
still (Figure 13.16).

 And there you have it! This is the simulation that creates the feel of Mario in all
its dirty, exhaustive details. What strikes me about it is just how seat-of-the-pants
many of the decisions and particulars are. Stuff like manually setting the Y veloc-
ity to a lower, artificial value when the jump button is released early and swapping
out the normal gravity value for one three times higher seems like it would have
the opposite of the intended outcome. Why do those particular changes make the
game feel better? I’ll attempt to address such questions at a more general level in the
Principles of Game Feel section. For now, though, I recommend fiddling around with
the final, composed applet a bit. Really dig in and change some of the parameters.

F I G U R E 13.16 Camera scrolling zones in Mario.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

220

At the end of this chapter, I’ve listed the tunings for Super Mario World and Mario 2.
See if you can arrive at them on your own, just by tweaking the numbers.

 States
 States are the final piece of the Mario feel puzzle from the standpoint of someone
trying to construct a perfect-feeling Mario stand-in. By state I mean a specific set
of instructions about how the game will respond to input. When a game has more
than one state it means that the same input might result in a different response from
the game, depending on what the character is doing at the time of the input. A sim-
ple example from Mario is illustrated by different horizontal acceleration in jumping
state versus the running state. In the running state, the acceleration is a very high
value, speeding Mario up very quickly from a standstill. In the air state, that value is
drastically reduced. Effectively, the change in state maps the same input to multiple
responses in the game. As long as the player has a way to conceptualize a change
in state, such as when Mario leaps into the air, the fact that the result for a particu-
lar input has changed is not jarring or distracting. In fact, it offers more expressive
potential.

 The states in Super Mario Brothers are idle, walking, running, jumping, stuck
and dead (Figure 13.17).

 For the record, this is how things are organized under the hood in Mario. More
or less. As long as the relationships are maintained, the implementation is more or
less irrelevant, but structuring things this way certainly makes it easier to get the
desired feel.

 Context
 Our rectangle is now happily sliding around. It feels great to leap around and run
and change directions. Right? Well, perhaps. Returning to example CH13-1, run

F I G U R E 13.17 States in Mario—stuck and dead are special cases.

221

around a bit. Notice anything weird? Right, there’s nothing in the level. It’s an end-
less field of blankness. Time to add context.

 A level design trick that originated with Super Mario Brothers or was at least
used heavily in it is the “Fortune Favors the Bold ” approach. Running full speed
to the right and attempting to quickly adjust to changes in the environment makes
the game much easier by virtue of the level design itself. The levels are set up to
encourage (and in many later levels, necessitate) this kind of bullish charge-ahead
play. It’s simply how the level is laid out: the jumps and obstacles are easier when
the player is moving at the maximum speed possible. Since that speed was predict-
able once the mechanic was complete, it was possible to design the levels to match.

 It seems to me that this was the intended experience of the game, as a whole.
Even the camera avatar’s behavior seems to encourage this behavior, by constantly
blocking the path behind the player. You can’t go back, the game seems to say, so
you might as well go forward as quick as possible.

 As a general rule, the spacing of the objects in Super Mario Brothers is about
four tiles high. To accurately recreate the feel of Mario, you need a level that’s built
this way. This is because while the character can actually jump close to five tiles
in height, jumping to an object four tiles high is much easier and drops the char-
acter onto the platform just at the shallow part of the jumping arc. Jumping to a
platform that’s just below the maximum height of the character’s highest jump just
feels better.

 Playable Example

 To experiment, try placing platforms at various heights in example CH13 - 1.
There are platforms of various heights to jump up to. Notice how the four-high
platform matches the jump best. Like Goldilocks ’ porridge. Best reference ever.

 The relative imprecision of the Mario mechanic makes it necessary to give the
player plenty of room for overshoot, in both the horizontal and vertical directions.
Part of that is making most platforms ’ height about four tiles apart. The other part
is stretching all platforms in the game horizontally. Now try removing some sec-
tions of ground in example CH13-1 to see what happens if you construct a level that
has mostly single-tile wide platforms to land on. Again, this hooks into the overall
design goal that the player should be running full speed to the right at all times.
Tiny, single-tile platforms encourage a more plodding approach, where each jump is
considered carefully before it’s executed.

 Another aspect of the context that plays heavily into the tuning of the rectan-
gle’s motion is the movement of enemies in the game. This is something we don’t
normally think of with respect to level design, but the motion of the AI characters
actually has a huge bearing on the way the mechanic will feel. Their motion domi-
nates certain areas of the screen space, changing the player’s ideas about the spatial
topology. An area enclosed by two tiles suddenly becomes a bit of a death trap

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

222

if there are two turtles wandering around in there. Similarly, jumping up a set of
stairs becomes an entirely different interaction when there’s a hammer brother at
the top. For a striking example, look at the first level in which 10 (the floating cloud
guy who tosses those red spiny bug-turtles) appears. Most of the level is flat with
almost no skillful jumping required, but the entire thing feels hurried and oppres-
sive because of the ceaseless shower of enemies raining down from on high.

 Enemies, and this is no accident, move along the ground at approximately the
same rate as Mario’s maximum walking speed. You can sync up with the speed of
the enemies ’ movement if you drop out of running. The result is that you can jump
into the midst of a group of enemies, walk temporarily for a precise amount of time
and then jump out again without feeling too out of control and without plowing
into the enemies themselves.

 Challenge is also defined by context, as it is in most heavily spatially oriented
games. In the later levels, the jumps become a bit wider, requiring more specific,
precise landings. To further ratchet up the difficulty, you must do a large number of
these precise jumps in rapid succession. At the same time, there are far more ene-
mies. Where once there was one Goomba, there will be three in a row followed by
two turtles. Then things like bullet bills and hammer brothers begin to appear, and
the meaning of even the simplest jump and motion changes. It may seem an obvi-
ous point, but it’s interesting to examine the ways in which challenge is constructed
via the addition of enemies. There’s almost always an optimal path that, if the play-
er’s running full speed, will take him or her through unscathed without too much
hassle. The game feels like a course to be run and perfected rather than like a space
to explore slowly and methodically.

 To get the feel of Mario, you need blocks that are four tiles high and are spaced
far apart horizontally. Pits in the ground are in a range from two blocks wide to six,
with six feeling quite risky to jump across. The difficultly ramp up happens based
on adding more of these wide, difficult jumps. They require a great deal of preci-
sion and force the player to do them in rapid succession. In addition, the later levels
become littered with increasing numbers and increasingly fast and unpredictably
moving enemies. These enemies serve, by their motion, to dominate areas of the
screen space and make it feel more unsafe and oppressive. In the game’s later lev-
els, no place feels safe, and it seems a mad dash of survival to reach the end.

 Indeed, there are lots of one-tile-wide blocks on 8-1 and 8-2, as well as lots of
single-tile pits you can run across. In addition, many pits get as wide as five or
six tiles, which leaves very little margin for error. Technically, Mario can jump 10
horizontal tiles at a full run, but it’s almost never used in the game because it’s so
difficult to do.

 Polish
 Up to this point, what we have is a bunch of rectangles moving and sliding around.
To examine the various polish effects, let’s turn on the character-based treatment.
So as not to infringe, I’ve created “ Scarfman ” as a Mario stand-in.

223

 Playable Example

 Open CH13 - 2 to see the rectangle replaced with a character and the various
tiles and enemies given some kind of representation.

RESPONSE

 First, animation effects. The character has a run cycle. When the motion of the
rectangle is activated, the visual representation now sitting on top of it plays back a
series of frames. It’s a very short and simple series of frames, but it’s an animation
nonetheless, and it conveys some new and different things to the players about the
nature of the object they’re controlling.

 One of the crucial parts of the feel of Mario is that the playback of the frames of
this running animation are synced up perfectly with the simulated motion under-
neath it. This was and is a big deal where feel is concerned; even today many games
don’t successfully accomplish the sense that the avatar is truly and accurately repre-
sentative of the simulated object underneath it. This is typically called “foot slip ” by
animators and is a particular problem in video games because of the unpredictable,
participatory nature of avatar movement.

 The fact that Mario really nailed this relationship between animation and avatar
movement was a big deal, even in this primitive, 8-bit context. The perception con-
veyed is that this is a little guy running along the ground and his feet are planting
at each step because the speed of animation is perfectly matched to the speed of
movement of the object.

 If the underlying simulated object is moving faster or slower than the ani-
mated object, it’s very easy to pick up on that discrepancy. It’s a very subtle clue
but it’s something that humans are very good at observing. We have a lot of prac-
tice observing and coping with our immediate physical surroundings at this tactile,
interactive level, so as soon as something doesn’t match up, it becomes immediately
obvious. The net result is that, in the player’s mind, the animated character and the
moving object beneath become separate entities, which makes it more difficult for
the player to engage in and believe in the reality of the game world. Something is
lost because you can see behind the curtain, see the simulation.

 Another important animated effect is the little slide that Mario does when he’s in
the process of reversing direction. If you reverse direction while Mario’s running, he
puts his hand up and assumes a little sliding pose. In the case of the Super Mario
Brothers, this is not a separate animation that gets played back. Rather, when you
apply the acceleration in the opposite direction, the character slows down. This is
another consequence of Mario’s simulated approach; instead of having a canned set
of frames played back for, say, a foot plant and direction change, the natural force
of the acceleration gradually counteracts the current velocity and Mario slows to a
halt, reverses direction and slowly speeds up going the other way. The animated
effect occurs if and only if the player is holding down a direction which is opposite
from the current direction of the character. So the underlying simulation has not
changed, but the animated effect on top of it is emphasizing and enhancing the

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

224

perception of what’s going on physically with the simulated objects. The character
is running in one direction, the player presses the other direction, the character goes
into a slide until the direction change is complete, and then the character resumes
the run animation (albeit at the lowest speed, speeding up gradually to match the
speed increase of the simulated rectangle). To put it another way, the animation
effects are there to enhance and emphasize what’s happening with the underlying
simulation, rather than wagging the dog the way the animations in, say, Prince of
Persia did.

 Another animated effect that’s crucial to the feel of Mario is the jiggle of bricks.
It seems like such a silly thing, but when you’re small Mario and you hit a brick
from underneath, it sort of jiggles. It jiggles in a very satisfying, very cartoony sort
of way, but it adds a lot to the sensation of interaction. It doesn’t actually affect
the simulation—it doesn’t move the brick, changing its permanent position—it’s
just a layered on animated effect that gives an impression of mass to the character.
This is especially true in the contrast between hitting a brick when you’re small as
opposed to when you’re large Mario. Small Mario causes the brick to seem loose
and jiggly when it’s hit, but that interaction also tells you that small Mario has a
certain amount of mass. If he can jiggle a brick loose, he’s striking with some force,
clearly. When you’re large and you can smash the bricks, it shows you that the
larger Mario is quite a bit more massive. It shows you that where diminutive Mario
simply loosened the brick, big Mario has the force to smash it spectacularly, causing
brick detritus to rain down.

 Playable Example

 Check out how the feel changes if you turn off both of these effects in example
CH13 - 2 to see just how much they sell the notion that this is a physical, malle-
able world.

 Visual Effects
 As we have defined them, there are very few visual effects in Mario. There was very
little processing power to work with on the NES, so there couldn’t be sprays of par-
ticles everywhere to emphasize every interaction. The trend over the years has been
toward more and more visual effects in the Mario game—the recent New Super
Mario Brothers and Mario Galaxy have almost ludicrous amounts of particles flying
everywhere all the time. In the original Mario, everything seems clean and smooth.
There aren’t even modest little puffs of dust or smoke when Mario enters the slide
pose to change directions. It seems as though every surface is pristine and smooth,
without a hint of dust or gravel. The only visual effect of note is the broken brick
particles that spawn and fly down when a tile is smashed. Again, though, look at just
how much is lost if this effect is removed. It just doesn’t feel satisfying to smash
bricks when they simply disappear. Removing this effect removes one of the few,

225

highly important clues the player has to derive notions about the physical nature of
this world.

 Sound Effects
 The sound effects in Mario are paramount. I’ve replaced them in my demos to
avoid infringing on Nintendo’s intellectual property, but note their nature. The ris-
ing, slide-whistle noise for jumping roughly matches the height change of Mario as
he flies upward, further harmonizing with the motion and the sensation of holding
down the button in emphasis to get a higher jump.

 There’s one collision noise—when Mario’s head hits a block or when a fireball
hits a wall—that sounds like a large rubber band being tweaked. It varies slightly in
pitch to stay fresh-sounding, but the impression it conveys is one of a silly, rubbery
world. It fits very well with the jiggle of the blocks when they’re hit by small Mario
and in general convey a sense of jiggly, bouncy movement. This would seem to be
selling a different impression than the smooth, frictionless collision simulation, but
because of the jiggle of the bricks, it matches well and makes the world seem more
alive and the physics more exaggerated than the more staid collision interactions
would suggest.

 The brick breaking sound is particularly satisfying—it truly does convey the sense
of a crumbling stone object, even with the limitations of the NES sound board.

 Metaphor
 Being as iconic as it is, it’s a little weird to look at Super Mario Brothers with an eye
to examining how the metaphorical representation it presents affects our expecta-
tions about how things will behave and act in its world. But humor me here, let’s
take a poke and see what we can see.

 First, let’s give Mario’s treatment a place on the three-axis scale between real-
istic, iconic and abstract. Obviously, Mario’s not realistic. The treatment, such as
it is, is far toward the iconic side of the diagram and indeed begins to creep up
toward pure abstraction. It’s very surreal. What, for example, is a Goomba? What
does it represent? A turtle in Mario looks something like a turtle, but it’s clearly
not attempting to meaningfully convey turtleness, if that makes sense. These turtles
are fast-moving, dangerous creatures. In general, the creatures and objects repre-
sented have very little grounding in meaning or reality. Their meaning is conveyed
by their functionality in the game, which is to present danger and to dominate areas
of space. They’re not abstract shapes and lines either, though. They’re definitely
meant to be creatures of some kind who obey their own bizarre rules of physics and
behavior. They simply tend toward the surreal. There’s very little meaning imbued
in these objects other than the function they serve in the game.

 What does that imply for the way that we expect things in this world to behave?
Well, we’re not grounded in expectations about how these things should behave.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

226

We don’t expect that because Mario is slightly portly that when he comes up to a
pipe or some wall that’s taller than he is that he’ll have to heft and sweat his way
laboriously over the top. Because the treatment is so surreal, we aren’t bound by
that expectation. He’s not a photorealistic representation of a plumber. He doesn’t
look like the plumber who came and cleared that hair clog from your shower. We
can accept that he leaps like a flea.

 In its abstractness and surrealness, Mario plays very well into the type of physi-
cal interactions and movements that it sets up. Mario flies through the air like a
flea getting this gigantic, spontaneous upward force and yet needs no wind up, no
anticipation, no pole to vault with. It’s very organic and expressive but it has very
little to do with the way that things behave in our own physical reality.

 But that’s okay because both the metaphor and treatment are surreal. The
abstract and surreal motions of the objects and the way things feel and function
don’t seem odd. Even the interactions between objects, which so often seem like a
block of ice sliding across a gymnasium floor, fit in just fine because of the dream-
like metaphor and lo-fi treatment. The metaphor is setting up very few expectations,
so all bets are off.

 The one place that Mario does actually lean into expectations is in the use of an
iconic human to represent states. Because Mario appears identifiably human, we
can look at him and say ah, yes, he’s on the ground running now, or hey, he’s in
the air jumping now. When he’s on the ground and running along, it’s apparent to
the player that he’s in a different state than when he’s in the air or when he’s swim-
ming. It’s easy to accept that when he’s in the air, he has less control, because it’s
obvious to the player that a different state has been entered. It’s odd that there’s any
control in the air, as this is not the way that things work in the real world, but the
visual cue effectively conveys the change and maintains a sort of logical cohesion,
even if it is rather surreal. You can definitely tell that Mario, as an iconic human, is
in a different state of being when he’s in the air than when he’s on the ground. It’s
a nice visual metaphor for changes in state. It uses the fact that he appears human
to tie in the logic of the states and how they function.

 Rules
 At the lowest level, there are a lot of really interesting rules about enemy interac-
tions that give the player clues about the physical nature of Mario and the world in
which he exists, which ultimately change the feel of interacting with that world. For
example, Goombas are weaker and less substantial than turtles. A Goomba is killed
in one stomp and gets wiped out of existence. A turtle can be stomped and killed in
one hit but leaves behind a shell. The fact that the shell remains seems to indicate
that it is more massive than the body of a Goomba. A shell can’t be destroyed as
easily as a Goomba can be stomped. By the same token, winged turtles seem more
powerful and massive than those without. You have to stomp them twice: once to
knock their wings off—the wings are not very well attached, apparently—and once

227

to knock them out of their shells. There’s this sort of hierarchy of powerfulness
amongst the creatures, from Goomba to turtle to winged turtle. Bowser is the most
powerful creature of all; he can’t be stomped. You have to drop him into lava.

 The other thing all these interactions tell us is that Mario himself is quite mas-
sive. These creatures are all about the same size as him, but he can stomp anything
in the game to death with relative ease. One assumes that his apartment is free of
cockroaches.

 At the medium level, there are three power-ups that have an immediate effect on
the spatial topology. You see them and you want them for the immediate benefits
they convey. So you focus in on grabbing that star, mushroom or fire flower. You’re
going to go out of your way to get it. Unless, of course, you already have the fully
powered up fire flower, in which case the flower and mushroom become meaning-
less and can be ignored. These are temporary effects but each changes the feel of
the game significantly. Going from small to big, you can smash bricks and you can
be less afraid of enemies because if they hit you, you simply turn small again. Fire
flowers enable you to run forward with impunity, dispatching enemies left and right
without having to stomp them. The whole feel and flow of the game are altered
because you no longer have to fear most standard enemies. They no longer domi-
nate certain areas of space, so the game suddenly feels more open. The star is the
ultimate temporary power-up, enabling you to run through enemies at leisure. With
the star, the challenge is temporarily reduced to jumping exclusively. This feels more
open, more free.

 Finally, at the highest level of long-period rules, there are 1-ups and coins. Score
in the game is mostly irrelevant, a throwback to an earlier age of arcade gaming. I
never pay attention to or try to beat my score in Super Mario Brothers. Extra lives,
however, I’m very interested in. Super Mario Brothers is a difficult game and you
are given only three lives at the outset, leaving very little margin of error. When I
see a 1-up mushroom, then, I get very excited and immediately focus all my atten-
tion toward attaining it. But the desire is tempered by the knowledge that if I die in
the attempt, the effort will have been wasted. The reward is almost directly propor-
tional to the risk. It feels like walking on eggshells. By virtue of the rules—lives are
the rarest commodity and there are very few of them—it seems like the highest pos-
sible reward, so I’m willing to undertake a huge risk to get it.

 Coins give a low-level sense of constant reward. Because collecting 100 coins
gives you a huge reward, an extra life, it always feels like you’re doing something
useful as you collect them. Useful, but mundane. It’s not like the excitement of the
fast-moving extra life mushroom. You might go a little out of your way to collect a
coin, but you wouldn’t risk dying over it.

 So in order for a game to feel like Mario, the metaphor should be surreal. It
doesn’t have to be an Italian plumber running around huge pipes and dealing with
abstract, surreal monsters that vaguely resemble turtles and bullets, but putting
Mario with the movement he has on a street corner in downtown New York will
seem a bit off. Similarly, a photorealistic treatment will clash with the surrealism
of the movement and interactions. To have that Mario feel, the treatment should be

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

228

iconic, bordering on the purely abstract. Again, it doesn’t have to be Mario specifi-
cally. As Scarfman shows, though, it ought to be a little guy.

 Summary
 Bet you’ll never look at Mario the same way, eh? I know that I certainly don’t after
such an in-depth examination. The other major takeaway here is that game feel,
even in a seemingly simple game like Super Mario Brothers, is really freaking com-
plex. All the tiny little decisions that meld together to comprise the feel of Mario
boggle the mind. Especially in the area of simulation and response to input, there
are a surprising number of small but important decisions. This examination gives us
a nice vocabulary for addressing things like whether the game keeps track of accel-
eration and velocity or whether it’s simply tracking and updating position and how
that will change feel.

 At this point, then, you should have a very clear idea of the depth of detail that
goes into creating a good-feeling game. If you’re creating a game from scratch, you
must be prepared. Keep your mind open to the possibility of changing any part of
the system with the goal of improving the feel, the perception. As Mario proves,
even things that seem hacky, such as artificially setting a jump velocity in the
middle of a jump, may turn out to feel better than a more pedantic approach to
simulation.

	Chapter 12. Asteroids
	The Feel of Asteroids
	Input
	Response
	Simulation
	Context
	Polish
	Metaphor
	Rules
	Summary

	Chapter 13. Super Mario Brothers
	Input
	Response
	Summary

